Initialization of multilayer forecasting artifical neural networks

نویسندگان

  • Vladimir V. Bochkarev
  • Yulia S. Maslennikova
چکیده

In this paper, a new method was developed for initialising artificial neural networks predicting dynamics of time series. Initial weighting coefficients were determined for neurons analogously to the case of a linear prediction filter. Moreover, to improve the accuracy of the initialization method for a multilayer neural network, some variants of decomposition of the transformation matrix corresponding to the linear prediction filter were suggested. The efficiency of the proposed neural network prediction method by forecasting solutions of the Lorentz chaotic system is shown in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

Forecasting Iran’s Rice Imports during 2009-2013

In the present study Iran’s rice imports trend is forecasted, using artificial neural networks and econometric methods, during 2009 to 2013, and their results are compared. The results showed that feet forward neural network leading with less forecast error and had better performance in comparison to econometric techniques and also, other methods of neural networks, such as Recurrent networks a...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network

The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...

متن کامل

IDIAP Technical report

Proper initialization is one of the most important prerequisites for fast convergence of feed-forward neural networks like high order and multilayer perceptrons. This publication aims at determining the optimal value of the initial weight v ariance (or range), which is the principal parameter of random weight initialization methods for both types of neural networks. An overview of random weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1410.6413  شماره 

صفحات  -

تاریخ انتشار 2014